3d-принтеры: зачем они нужны и как они работают

Управление процессом печати

Как правило, пользователю нужно произвести ряд настроек непосредственно перед началом печати.

  1. Подключение оборудования к ПК осуществляется через USB-кабель.
  2. Калибровка перемещения сопла относительно платформы.
  3. Настройка и управление нагревом платформы и сопла-дозатора.
  4. Мониторинг соотношения температур.
  5. Управление процессом печати (экструдером) – настройка скорости подачи материала, замена бобин пластика.

Контроль над печатью осуществляется через ПК. Для создания объекта от идеи до результата пользователю необходимы специальные программы для трехмерного моделирования и управления аппаратом.

Перед запуском печати оператор калибрует принтер, настраивая его относительно стола-платформы. Базовая прошивка принтера представляет собой ряд настроек по умолчанию, а пользователь производит более точные настройки, в зависимости от используемого материала. Так, для создания объемных элементов на основе ABS или PLA задается разная температура плавления. В процессе печати, оператор через ПО следит за работой. Весь процесс создания модели может занимать от нескольких часов до суток, здесь ключевым фактором является точность исполнения: точные объекты с детальной прорисовкой производятся дольше, чем более грубые.

Нестандартные вещи, которые были изготовлены при помощи устройства объемной печати

Клиенты требуют улучшения технологий и расширения ассортимента доступных товаров. Поэтому модели принтеров приходится совершенствовать с каждым сезоном, и добавлять дополнительные функции в производство. Печать на 3d позволяет изготовить самые разнообразные предметы интерьера. Возможности безграничны в плане выбора материалов и формы изделия из стали.

Удивительные вещи или что на 3D принтере:

  • Копия человека в уменьшенном размере.
  • Лунное кольцо.
  • Браслет с пчелиными сотами.
  • Огненный единорог и ледяной дракон по мотивам фантастических историй.
  • Напечатанная гитара в 3D формате.
  • Фигурки из рисунков.
  • Протезы для раненых животных.
  • Чехлы для гаджетов.
  • Необычная посуда.
  • Искусственные руки и ноги для больных детей.
  • Модели внутренних органов и частей тела.
  • Золотые и платиновые украшения.
  • Железная одежда и обувь.
  • Стальные доспехи для косплеев и сражений.
  • Мини палатка из нейлона.
  • Части оружия.
  • Пластиковый зародыш.
  • Винтажные фигуры диких зверей и растений.
  • Дом напечатанный на 3d принтере.
  • Сложные комбинации и скульптуры.
  • Элементы декорирования комнаты.
  • Подарки в виде статуэток, декоративные вазы.

Покупатели могут выбрать сувенир практически любых параметров. И в этом заключается преимущество инновационной технологии воплощения фантазий в действительности. Украшения из золота, детали из пластика, прототипы частей тела, фигурки героев из видеоигр и сериалов – выбор достаточно разнообразен для реализации желаний.

Постепенно предприниматели заполняют нишу услуг 3D печати, и конкуренция растет соразмерно с новшествами техники. В ближайшее время данное устройство будет работать повсеместно, и пользователи оценят прибыльную технологию. Этот прибор станет заменой обычному принтеру, и кропотливый труд с многочисленными ошибками останется позади.

3d принтер по дереву будет полезен для мебельщиков и архитекторов. А в особенности для любителей творить деревянные игрушки для детей, миниатюрные корабли и диких животных. Чтобы разбираться в сложной технике, необходимо тщательно изучить инструкцию по эксплуатации. А потом освоить несколько кнопок, и определиться с подходящими материалами.

Современные варианты принтера работают с золотом, платиной, пластиком, сталью, нейлоном, титаном и алюминием. Стоимость одного товара зависит в первую очередь от средств и компонентов при изготовлении востребованных элементов. Поэтому торговля услугами требует внимательности и усидчивости со стороны предпринимателей. Ведь ради нового бизнеса нужно уделять не только время, деньги и умственные силы. Помимо этого необходимо продумать этапы построения системы торговли и поиска постоянных клиентов.

Этап 5: Печать 3D-объекта

Важнейшими элементами 3D-принтера являются рабочая платформа и печатающая головка. На рабочей платформе происходит формирование готового объекта. Во время работы платформа двигается вверх и вниз по оси Z. Печатающая головка выдавливает на рабочую платформу расплавленную полимерную нить, слой за слоем формируя готовый объект. Печатающая головка 3D-принтера движется по горизонтали и вертикали (оси X, Y).

Конструктивные элементы FDA-принтера

Сам по себе процесс трёхмерной печати довольно прост. Печатающая головка выдавливает в рабочую зону первый слой расплавленного пластика, после чего платформа опускается вниз на толщину слоя и начинается формирование следующего слоя, который накладывается поверх предыдущего. После завершения печати каждого слоя платформа опускается вниз, так происходит на протяжении всего цикла печати, пока на платформе не появится готовый объект.

3D-печать: принтер наносит на платформу первые слои изделия

Печать объекта продолжается. На фото хорошо видны слои, которые наносит печатающая головка

3D-печать на завершающем этапе

Чтобы напечатать трёхмерную модель, принтеру требуется несколько часов, в зависимости от сложности изделия.

Безусловно, у разных моделей 3D-принтеров есть свои особенности функционирования, но базовые принципы остаются неизменными.

При выборе 3D-принтера стоит обратить внимание на такие параметры:

Технология печати. В список самых популярных технологий, с которыми работают 3D-принтеры, входят: FDM, SLA и SLS.

FDM является самой распространенной и часто применяется в не очень дорогих устройствах с хорошим качеством печати. Для работы используется пластиковая нить, которая в процессе плавится и выдавливается на платформу.

Технология SLA более точна и позволяет создавать ювелирные изделия.  Расходным материалом выступает фотополимер, который под воздействием специального луча, превращается в твердый пластик.

Принтеры, работающие по SLS-технологии, отличаются массивностью, широким выбором материалов и дороговизной. Их используют в машиностроении, космонавтике и других сферах. В основе этой технологии лежит последовательное спекание слоев порошкообразного материала путем применения лазеров.

Чтоб определиться с технологией, нужно понимать, для чего Вы будете использовать 3D-принтер.

Материал. Подумайте, с какими материалами Вы хотите работать. Учитывайте их стоимость, расход и дополнительные характеристики (гибкость, растворимость, запах, свечение в темноте, прочность и т.д.). Для новичков хорош PLА (полилактид). Из него получаются гладкие и ровные изделия.

Параметры детализации. Точность печати зависит от выбранной технологии и расходных материалов. Чем меньше высота слоя, тем выше этот параметр. Из пластика PLA и ABS получаются объекты с достаточно высокой детализацией. Для изготовления несложных и крупных моделей точность менее важна, чем скорость.

Область печати. Учитывайте размеры изделий, для которых нужен принтер. Если Вы купите устройство со слишком маленькой рабочей областью, большие модели придется печатать по частям.

Скорость работы. Она измеряется в см/ч либо в мм/с, влияет на время «выращивания» объекта и в значительной мере зависит от качества корпуса, а также механики устройства. Все современные программы для управления трехмерной печатью дают возможность менять параметры скорости. В начале работы лучше установить ее значение на отметке 50%, чтоб первый слой хорошо закрепился на площадке. В идеале ­– максимальная скорость работы принтера должна составлять 100 мм/с и выше.

Программное обеспечение. Убедитесь в совместимости модели с популярным ПО. Уникальный софт может несвоевременно обновляться либо быть платным. От программной начинки зависит возможность тонких настроек и адаптации устройства под себя.

Работа с 3D-принтером дает возможность ощутить себя настоящим творцом и задействовать фантазию.

Технологии 3D-печати

Управление 3D-принтером не требует углубленных знаний в области материаловедения и большого опыта обработки материалов. Конечно, у 3D-печати тоже есть свои нюансы, но научиться работать на трёхмерном принтере значительно проще, чем на фрезерном, токарном или деревообрабатывающем станке.

Современные технологии прототипирования в большинстве своём основаны на принципе отсечения лишнего, благодаря которому при создании моделей остаётся большой объём отходов. Технология 3D-печати является приятным исключением из общего правила, поскольку в её основу заложен не принцип отсечения лишнего, а принцип послойного выращивания, при котором объём отходов либо минимален, либо их нет вообще.

Технологии и методы 3D-печати

Технология печати
Метод печати Краткая характеристика технологий
Струйная печать
Экструзия Материал плавится и в жидком виде выдавливается в рабочую зону через сопло малого диаметра. Слои жидкого материала соединяются друг с другом и при охлаждении застывают, приобретая прочность
Фотополимеризация Жидкий полимер подаётся в рабочую зону через сопло малого диаметра. Слои облучаются ультрафиолетом и твердеют
Склеивание Объект формируется чередованием слоёв порошкообразного материала и клея. Клей выдавливается из сопла принтера
Лазерная печать
Лазерное спекание Порошкообразный материал наносится тонким слоем и спекается лазерным лучом, затем наносится и спекается следующий слой и т.д.
Cтереолитография Лазерный луч засвечивает верхний слой жидкого фотополимера, которым наполнена рабочая ёмкость принтера. В местах касания лазерного луча фотополимер твердеет. Платформа с готовым слоем погружается и формируется следующий слой
Прочие технологии
Ламинирование Из тонких плёнок вырезаются слои, которые соединяются в готовый объект под действием нагрева или давления.

В медицине изобрели специализированные 3D-биопринтеры, которые печатают не фотополимерами, а живыми клетками. С помощью таких принтеров в ближайшие десятилетия начнут выращивать органы и ткани для пересадки в организм человека.

В строительстве разработали строительный 3D-принтер, который печатает строительные объекты из быстрозастывающего бетона. Строительный принтер с технологией Contour Crafting может за сутки возвести двухэтажный дом площадью 200 кв.м.

Строительный 3D-принтер Contour Crafting

Чем печатает: расходные материалы

Основные расходные материалы для трехмерных моделей – пластик и фотополимер.

АБС пластик. Не токсичен, не имеет запаха, обладает высокой ударопрочностью, термостойкостью и эластичностью. Плавится при температуре около 245° C. Продается в виде порошка или цветных нитей. Не переносит прямых солнечных лучей, не позволяет получать прозрачные модели. Растрескивается, расслаивается, острые углы, тонкие выступы деформируются. При работе нужна вентиляция.

ПЛА-пластик. Полилактид – экологически чистый пластик, производимый из остатков кормовых культур: свеклы, кукурузы. Приятно пахнет при расплавлении. Модели со временем разлагаются в теплых помещениях, дорогой, по сравнению с АБС-пластиком. При механическом воздействии сгибается, сжимается, разрушается вследствие падений. При температуре от 600 C теряет форму.

PET. Распространенный полимер, встречающийся в бутылках из-под напитков и воды, пищевых контейнерах. Для 3D-принтеров применяется модификация PETG – пластик чище, менее хрупкий. Впитывает влагу, а потому нуждается в хранении в сухих помещениях. Несмотря на механическую стойкость, легко царапается, противостоит термическим воздействиям.

Нержавейка. Печатает «долгоживущие» изделия, которые противостоят коррозии – статуэтки, узлы механизмов, брелоки. Наряду с нержавейкой применяются алюминий, латунь, медь, бронза. Прототипы нуждаются в постобработке.

Дерево. Дорогой и эстетичный материал, состоящий из полимерной основы с добавкой деревянных волокон (стружки, тирсы) кедра, сосны, березы. Встречаются и экзотические образцы с частицами черешни, кокоса, пробкового дерева, бамбука. Изделия пахнут деревом, после шлифовки практически не отличаются от столярных. Актуально, когда внешний вид важнее точности и цены.

Смолы. Дорогой расходник для получения гладких прочных моделей с высокой детализацией. Используется в многоструйных принтерах (MJP) и принтерах лазерной стереолитографии. Смолы бывают жесткими, эластичными, матовыми, прозрачными, цветными, термостойкими. Под воздействием солнечного света фотополимерная смола теряет прозрачность. Отличаются гладкой поверхностью и простотой постобработки.

Нейлон. Аналог ABS-пластика с повышенной до 320°C температурой плавления, гигроскопичностью и токсичностью. Долго остывает и требует экструдера с шипами. Используется для печати движущихся деталей.

Сколько по времени выращивается модель? От чего зависит скорость печати?

Металлический предмет производит принтер по металлу от нескольких часов до нескольких суток. К примеру, модель высотой 3-4 см будет печататься от 2 до 8 часов, в зависимости от ее площади и высоты. Тестовая печать на промышленном 3D принтере с камерой построения 280 х 280 х 360 мм занимает около суток.

Производительность аддитивных установок зависит от разных факторов:

  1. Чем больше лазеров, тем выше скорость и больше количество производимых деталей (мощность лазера – 400, 700 или 1000 Вт).

  2. В зависимости от конструкции системы порошок может распределяться в двух или только в одном направлении. Подача порошка в двух направлениях обеспечит значительную экономию времени производства.

  3. Непрерывная или периодическая подача порошка. Системы с периодической подачей могут требовать остановку оборудования для дозаправки во время выполнения построения, что замедляет процесс.

  4. Возможность настроить рабочие параметры системы для увеличения скорости.

Sharebot MetalONE – компактный DMLS-принтер нового поколения для НИОКР, образования, а также малого и среднего бизнеса. Идеально подходит для изучения новых материалов, а благодаря небольшой камере построения (65 x 65 x 100 мм) вы сможете создавать объекты из малого количества металлического порошка – всего 800 г.

Брать или не брать: достоинства и недостатки оборудования

Использование объемной печати предоставляет пользователям обширные возможности. Ключевое преимущество техники – воспроизведение любого трехмерного объекта, и исключений здесь практически нет. Все, что может быть изготовлено из пластика, можно «напечатать», будь то дорогой в оригинале бампер от иномарки или проект будущего торгового центра на выставке архитекторов. Решающим фактором станет размер оборудования, а выражаясь точнее – размер его рабочего стола.

Потенциал «пластиковой печати» усложнен трудоемким процессом подготовки и управления, требующим узкоспециализированных знаний. Неопытный пользователь не всегда сможет спроектировать в 3D-MAX даже простую геометрическую фигуру, не говоря о собственном портрете. Чтобы пользоваться техникой, ее необходимо освоить, а этой займет некоторое время.

Второй недостаток 3D-принтера – его габариты. В продаже доступны и компактные модели, но их предельные размеры печати слишком скромны, хотя вполне подойдут для поэтапного изготовления инсталляций или архитектурных проектов.

Конечно, в качестве игрушки приобретать 3D-принтер нерационально, средняя стоимость моделей дешевого сегмента превышает 30 000 рублей. Покупка будет выгодна, если оборудование будет выполнять определенную задачу: приносить прибыль, развивать навыки, получать образование, заниматься творчеством, помогать в работе.

В ближайшем будущем можно ожидать новых разработок в этой области. Сегодня уже можно напечатать настоящий жилой дом из обычной строительной смеси. Естественно, такое оборудование недоступно для бытового использования, но сам факт применения новых материалов для печати обещает методичное расширение возможностей объемной печати в домашних условиях.

Конструктивные особенности 3D-принтеров

Принцип работы 3D-принтера основан на законах кинематики. Выделяют несколько схем 3D-печати, исходя из перемещений платформы и печатающей головки, которые могут двигаться относительно друг друга в различных плоскостях.

Существует четыре основные схемы печати:

  • дельта,
  • экструдер перемещается по осям Х и Y,
  • экструдер меняет положение в пространстве по осям X и Z,
  • экструдер движется по осям X, Y и Z.

I схема

Платформа находится в неподвижном состоянии, положение по осям x, y, z меняет только экструдер. Особенность модели — наличие высокого каркаса. Печатающая головка размещена на трёх стержнях, каждый из которых закреплен на подвижном блоке, размещённом на опоре, с возможностью вертикального перемещения.

Плюсы: высокая скорость печати, хорошая точность.

Дельта

II схема — экструдер движется по осям Х и Y

Печатающая головка находится над платформой и способна двигаться влево-вправо или вперед-назад, а платформа вверх-вниз.

Экструдер движется по осям Х и Y

III схема — экструдер перемещается по осям X и Z

Экструдер, как в предыдущем типе, способен передвигаться влево или вправо, а также менять своё положение в пространстве по высоте. Платформа, в свою очередь, способна двигаться вперед или назад не меняя высоты.

Экструдер перемещается по осям X и Z

IV схема – экструдер движется по осям X, Y и Z

Последняя схема предполагает использование неподвижной платформы. Как в случае со схемой «Дельта», экструдер способен перемещаться по трём осям , однако в данном случае нет сложного механизма фиксации печатающей головки.

Матричные принтеры

Зачем изготавливать специальные диски с изображениями различных символов и шрифтов, если любой символ, цифру и даже изображение можно сформировать из точек? Поэтому у матричного принтера появилась универсальная печатная головка, в которой расположено некоторое количество специальных иголочек. При этом сам принцип нанесения текста на бумагу не изменился: иголочки бьют по листу через красящую ленту, создавая заданное изображение. В начале 1970-ых годов большой популярностью пользовался матричный принтер Model 101, выпущенный фирмой Centronics DataComputer.

В его печатной головке было всего 7 иголок. Потом количество иголок стало возрастать (12, 18 и даже 24), равно как и возможности таких устройств. Как ни странно, матричные принтеры используются и по сей день: в кассовых аппаратах многих магазинов. Пусть они далеко не самые скоростные и бесшумные, но зато печать с их использованием весьма экономична.

Виды и типы

Виды по технологии печати

Существует десяток технологий трехмерной печати:

  • FDM. Работа основана на застывании материала при охлаждении. Раздаточная головка послойно наносит разогретый материал на основу. Слои сцепляются друг с другом и быстро остывают. Поддерживается печать несколькими цветами. К принтерам, работающим по технологии FDM, причисляют мэйкерботоподобные, кулинарные (для работы с шоколадом, глазурью) и медицинские агрегаты (печатают гелями с жидкими клетками), Stratasys-принтеры.
  • Polyjet. Появившаяся в 2005 году методика создания пространственных объектов путем полимеризации фотополимера под воздействием лазерного излучения. Фотополимер применяется преимущественно в медицине: он легкий и хрупкий, а технология печати обеспечивает высочайшую детализацию прототипа.
  • MJM. Многоструйное моделирование посредством подачи материала через десятки микроскопических сопел. Из-за хрупкости готовых моделей и дороговизны расходных материалов  технология применяется редко, разве что для создания силиконовых форм для литья.
  • Lens. Расходный материал, выдавливаемый из сопла, облучается лазером и тут же спекается. Создает объекты из металлического порошка (частицы титана, стали). Порошки могут перемешиваться, создавая сплавы уже во время печати детали.
  • LOM. Ламинирование – формирование композиции из ламинированных листов. Нужные детали вырезаются лазером, накладываются и склеиваются (спрессовываются) в будущую модель. В качестве расходника применяют бумагу, алюминиевую фольгу, которая спекается под воздействием ультрафиолета, пластик. Преимущество метода – копеечная цена расходников (бумаги).
  • SLA. Стереолитография или фотополимеризация – прототип выращивается на помещенной в жидкую ванну сетке. Сначала ее покрывает слой вещества толщиной до 0,13 мм (разрешение). Лазер сверху обрабатывает те участки полимера, которые должны затвердеть. Платформа опускается на 0,05-0,13 мм в зависимости от разрешения и процесс повторяется. Деталь нуждается в постобработке – шлифовании, иногда в обработке в ультрафиолетовой духовке. Не позволяет печатать двумя материалами или цветами.
  • LCD. Ультрафиолетовая светодиодная матрица засвечивает фотополимерный материал через жидкокристаллический экран. Последний управляет степенью поляризации света по всей своей площади, формирую матрицу будущего слоя детали.
  • DLP. Вид SLA-печати, где в качестве исходников применяются жидкие фотополимерные смолы. Для полимеризации (отверждения) полимера применяется обычный видимый свет. Модель может формироваться как на поднимающейся, так и на опускающейся платформе.
  • SLS. Относится к методам создания прототипов на базе выровненного слоя порошка, который спекается лазерным лучом. Технология позволяет работать с керамическим, металлическим порошками, стеклом, пластиком, получать мелкие и сложные детали. Не спекшийся порошок минимизирует количество расходуемых материалов.
  • EBM — электронно-лучевая плавка порошка металла в вакуумной камере. Для формирования модели задействуется металлическая глина: порошок металла, органический клей и вода. Из-за нагревания смеси вода с клеем испаряются, а частицы стружки сплавляются.
  • 3DP. Трехмерная струйная печать. Заключается в чередовании нанесения слоев порошка и клея. В итоге получается модель из материала, схожего на гипс. Поддерживает многоцветную печать, в качестве порошка применяется резина, пластик, дерево, сахар.
  • Цветные. К цветным относят следующие методы: FDM, 3DP, EBF, LOM, MJM. Для формирования цветных прототипов нужны аппараты с несколькими экструдерами. Второй метод – сублимация – нагрев красителя в нужных местах до его испарения.

По типу применяемых расходников

В качестве расходников применяется несколько материалов.

Порошки Печатающая головка наносит на подложку слой клея в нужных местах, валик – слой порошка (металлической пудры), спекаемого с веществом.
Гипс Предыдущий вариант, где вместо металлического порошка применяют гипс, шпаклевка, цемент обязательно со связующим компаундом.
Полимеры Жидкие фотополимеры затвердевают под воздействием электромагнитных излучений (метод SLA). Расплавленные пластиковые нити (PLA, PVA, ABS) послойно наносятся на подложку и шустро затвердевают.
Воск Доступный легко плавящийся материал для получения высококачественных деталей, прост в работе.

Где применяют 3D-печать

В основном в профессиональных сферах.

Строительство. На 3D-принтерах печатают стены из специальной цементной смеси и даже дома в несколько этажей. Например, Андрей Руденко еще в 2014 году напечатал на строительном принтере замок 3 × 5 метров. Такие 3D-принтеры могут построить двухэтажный дом за 20 часов.

Медицина. О печати органов мы уже упоминали, а еще 3D-принтеры активно используют в протезировании и стоматологии. Впечатляющие примеры — с помощью 3D-печати врачам удалось разделить сиамских близнецов, а кошке без четырех лап поставили протезы, которые напечатали на принтере. 

Подробнее о 3D-принтинге в медицине можно узнать в статье издания 3D-Pulse.

Космос. С помощью трехмерной печати делают оборудование для ракет, космических станций. Еще технологию используют в космической биопечати и даже в работе луноходов. Например, российская компания 3D Bioprinting Solutions отправит в космос живые бактерии и клетки, которые вырастят на 3D-принтере. Создатель Amazon Джефф Безос презентовал прототип лунного модуля с напечатанным двигателем, а космический стартап Relativity Space строит фабрику 3D-печати ракет. 

Авиация. 3D-детали печатают не только для космических аппаратов, но и для самолетов. Инженеры из лаборатории ВВС США изготавливают на 3D-принтере авиакомпоненты — например, элемент обшивки фюзеляжа — примерно за пять часов.

Архитектура и промышленный дизайн. На трехмерных принтерах печатают макеты домов, микрорайонов и поселков, включая инфраструктуру: дороги, деревья, магазины, освещение, транспорт. В качестве материала обычно используют недорогой гипсовый композит. 

Одно из необычных решений — дизайн бетонных баррикад от американского дизайнера Джо Дюсе. После терактов с грузовыми автомобилями, которые врезались в толпу людей, он предложил макет прочных и функциональных заграждений в виде конструктора, которые можно напечатать на 3D-принтере.

Изготовить прототип помогла компания UrbaStyle, которая печатает бетонные формы на строительных 3D-принтерах

Образование. С помощью 3D-печати производят наглядные пособия для детских садов, школ и вузов. В некоторых московских школах с 2016 года есть трехмерные принтеры: на уроках химии дети разглядывают 3D-модели молекул и проводят реакции в напечатанных пробирках, на физике изучают электрическую цепь на 3D-прототипе токопроводящего стенда, а еще сами печатают себе ручки на уроках ИЗО.

Узнать больше о 3D-технологиях в школах можно на сайте «Ассоциации 3D-образования». 

А еще 3D-печать помогает в быту, производстве одежды, украшений, картографии, изготовлении игрушек и дизайне упаковок.

В качестве итога об основных плюсах и минусах трехмерной печати

3D-печать – направление перспективное и с большим потенциалом. Чтобы расставить все точки над «i» в изучении вопроса трехмерной печати, приведем основные ее преимущества:

  • скорость, универсальность и снижение трудоемкости. Один принтер может заменить небольшую производственную линию со станками, пресс-формами или формами для литья, и это только начало. Чтобы создать предмет привычными ручными способами, может понадобиться немало времени и усилий по созданию заготовок, обтачиванию, соединению деталей – принтер решает эту задачу гораздо проще и быстрее;
  • свобода творчества, ведь принтер может напечатать практически любой объект, созданный в программе;
  • разнообразие используемых материалов, и речь не только о пластиках и металле, но и о живых клетках и продуктах питания. Более того, трехмерная печать позволяет полноценно работать с теми материалами, которые другими способами обработать очень сложно или даже невозможно;
  • простота в использовании и экономичность, низкая вероятность ошибок;
  • возможность использования достижений трехмерной печати в медицине для создания искусственных тканей и органов, протезов, имплантатов.

Существующие минусы:

  • построение объекта из слоев означает наличие границ-переходов, поэтому поверхность предмета будет шероховатой и матовой. Если же толщина слоя большая, то переходы между ними будут заметны невооруженным взглядом. Прочность напечатанных объектов, особенно по методу FDM, уступает прочности предметов, выточенных из цельного куска материала;
  • ограничение в размерах. Напечатать объект, который будет больше рабочей поверхности, невозможно. Сейчас уже есть принтеры с неограниченной зоной печати, но это пока только разработки;
  • высокая цена, но это лишь вопрос времени. Новые технологии всегда дорогие, а с развитием и популяризацией они стремительно дешевеют. К стоимости прибавить необходимо еще и цену расходных материалов;
  • сокращение существующих промышленных производств и опасность печати оружия – глобальные проблемы трехмерной печати.

Трехмерная печать – это будущее медицины и промышленности, а также возможность быстрого создания прототипов и моделей, а это бесценно для инженерии. Кто знает, может, через 5-10 лет мы так же просто будем скачивать модели чашек или обуви и печатать их на собственном домашнем принтере, как сегодня скачиваем и просматриваем фильмы.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector